The Effect of Turbulence on Momentum and Heat Transport in Packed Beds with Low Tube to Particle Diameter Ratio

Author:

Molina-Herrera F. I.,Castillo-Araiza C. O.,Jiménez-Islas H.,López-Isunza F.

Abstract

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference148 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3