Effect of inlet gas velocity on gas-solid fluidization characteristics in fluidized bed

Author:

Du Shanlin12,Lv Guoqiang12,Ma Wenhui12,Gu Guangkai12,Fu Boqiang12

Affiliation:

1. Faculty of Metallurgical and Energy Engineering , Kunming University of Science and Technology , Kunming 650093 , China

2. State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province , Kunming 650093 , China

Abstract

Abstract In this article, the Eulerian–Eulerian TFM model is used to simulate the fluidization of the synthesis process of organosilicon monomers. A new method for analyzing the gas-solid fluidization characteristics is proposed by combining the gas-solid two-phase flow evolution formula with the parameters such as particle concentration and bed voidage. On this basis, the fluidization characteristics of silicon powder particles at constant velocity and variable velocity are compared, and the fluidization characteristics of silicon powder particles with different particle sizes under five sets of variable velocity are discussed. The simulation results show that compared with constant velocity, the mean bed voidage is 0.55 when silicon particles adopt variable velocity, which can not only keep silicon particles fully fluidized but also improve the problem of poor gas-solid contact. For silicon particles with particle diameters of 300.1–515 μm, variable velocity fluidization has the advantages of uniform bed distribution and sufficient gas-solid fluidization. In the five groups of variable velocity function, when the inlet gas velocity and time are the quadratic functions of the opening upward, the fluctuation of pressure fluctuation is small, and the maximum fluctuation range of particle solid phase distribution is only 0.13, indicating that the heat and mass transfer efficiency between silicon particles is better, the gas-solid mixing is sufficient, and the gas-solid fluidization quality is better.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3