Kinetic analysis of dual impellers on methane hydrate formation

Author:

Longinos Sotirios Nik1,Parlaktuna Mahmut1

Affiliation:

1. Department of Petroleum and Natural Gas Engineering , Middle East Technical University , Ankara , Turkey

Abstract

Abstract This study investigates the effects of types of impellers and baffles on methane hydrate formation. Induction time, water conversion to hydrates (hydrate yield), hydrate formation rate and hydrate productivity are components that were estimated. The initial hydrate formation rate is generally higher with the use of Ruston turbine (RT) with higher values 28.93 × 10−8 mol/s in RT/RT with full baffle (FB) experiment, but the decline rate of hydrate formation was also high compared to up-pumping pitched blade turbine (PBTU). Power consumption is higher also in RT/RT and PBT/RT with higher value 392,000 W in PBT/RT with no baffle (NB) experiment compared to PBT/PBT and RT/PBT experiments respectively. Induction time values are higher in RT/RT experiments compared to PBT/PBT ones. Hydrate yield is always smaller when there is no baffle in all four groups of experiments while the higher values exist in experiments with full baffle. It should be noticed that PBT is the same with PBTU, since all experiments with mixed flow have upward trending.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3