Performance of flow distribution in a microchannel parallel flow gas cooler with stepped protrusion depth header

Author:

Wang Ke1,Liu Jiaqi1,Liu Zunchao1,Wang Yongqing2ORCID,Wang Dan2

Affiliation:

1. School of Mechanics and Safety Engineering , Zhengzhou University , No.100 , Kexue Avenue , Zhengzhou , 450001 , China

2. School of Mechanical and Power Engineering , Zhengzhou University , No.100 , Kexue Avenue , Zhengzhou , 450001 , China

Abstract

Abstract Microchannel parallel flow gas cooler is commonly used in transcritical carbon dioxide automotive air conditioning system. To investigate the influence of the flat tube protrusion depth on fluid distribution, a numerical calculation model of microchannel parallel flow gas cooler with D-shaped header is established. With the object of even flow distribution, a novel stepped protrusion depth header is proposed. The effects of new header on the flow distribution of gas cooler were studied by numerical simulation. The results show that the flow distribution performance of gas cooler can be improved by changing the flat tube protrusion depth. Changing the protrusion depth of three groups of flat tubes simultaneously can achieve a better flow distribution performance of gas cooler than changing the protrusion depth of only one or two groups of flat tubes. When compared with the protrusion depth of all flat tubes is 0, the novel stepped protrusion depth header reduces the total flow distribution nonuniformity of gas cooler by 34–51%. The research in this paper provides a method for improving the flow distribution performance of gas coolers.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3