Experimental characterization, TDDFT-DFT, and spin effect on [PEG/H2O–ZrO2/TiO2]h hybrid nanofluid 3D flow as potential ceramic industry application

Author:

Eid Mohamed R.12,Ali Mohammed A.2,Al-Hossainy Ahmed F.3

Affiliation:

1. Mathematics Department , Faculty of Science, New Valley University , Al-Wadi Al-Gadid , Al-Kharga 72511 , Egypt

2. Mathematics Department , Faculty of Science, Northern Border University , Arar , 1321 , Saudi Arabia

3. Chemistry Department , Faculty of Science, New Valley University , Al-Wadi Al-Gadid , Al-Kharga 72511 , Egypt

Abstract

Abstract Doped zirconium oxide nanoparticles [ZrO2]NPs in the [PEG–H2O] and [TiO2]NPs in the [PEG–H2O/ZrO2]C matrices to fabricated the [PEG–H2O/ZrO2+TiO2]h hybrid nanofluid films by a sol–gel method, the average crystallite size is 100 ± 5 nm. The nanofluid and hybrid nanofluid thin films are studied using combined experimental and DFT theoretical method (DMOl3), including FTIR spectrum and optical properties. Mathematically, Higher rate of reactions of rotating [PEG/H2O–ZrO2]m, and [PEG–H2O/ZrO2+TiO2]h nanofluids on an extending sheet is considered with thermal radiation and heat source. The numerical Runge–Kutta–Fehlberg of 4–5th order (RKF45) method is used to solve the issue. The results specifically determine that Δ E g Opt ${\Delta}{E}_{g}^{\text{Opt}}$ values decrease from 2.27 eV for [PEG–H2O/ZrO2]m mono nanofluid to 1.596 eV for [PEG–H2O/ZrO2+TiO2]h hybrid nanofluid using the DFT computations HOMO and LUMO calculation. This result concluded that the [PEG–H2O/ZrO2]m transformed from semiconductor to [PEG–H2O/ZrO2+TiO2]h as a superconductor hybrid nanofluid by addition [TiO2]NPs. The hybrid nanoparticles have a higher influence than nanoparticles on the velocity distributions.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference79 articles.

1. Abd-Elmageed, A., S. Ibrahim, A. Bourezgui, and A. Al-Hossainy. 2020. “Synthesis, DFT Studies, Fabrication, and Optical Characterization of the [ZnCMC]TF Polymer (Organic/Inorganic) as an Optoelectronic Device.” New Journal of Chemistry 44: 8621–37, https://doi.org/10.1039/d0nj01719a.

2. Abdel-Aziz, M. H., E. Z. El-Ashtoukhy, M. Bassyouni, A. F. Al-Hossainy, E. M. Fawzy, S. M. Abdel-Hamid, and M. S. Zoromba. 2020. “DFT and Experimental Study on Adsorption of Dyes on Activated Carbon Prepared from Apple Leaves.” Carbon Letters: 1–16, (in press), https://doi.org/10.1007/s42823-020-00187-1.

3. Abdel-Gaied, S., and M. R. Eid. 2011. “Natural Convection of Non-Newtonian Power-Law Fluid over Axisymmetric and Two-Dimensional Bodies of Arbitrary Shape in Fluid-Saturated Porous Media.” Applied Mathematics and Mechanics 32: 179–88, https://doi.org/10.1007/s10483-011-1404-6.

4. Abo-Dahab, S. M., M. A. Abdelhafez, F. Mebarek-Oudina, and S. M. Bilal. 2021. “MHD Casson Nanofluid Flow over Nonlinearly Heated Porous Medium in Presence of Extending Surface Effect with Suction/Injection.” Indian Journal of Physics, (in press), https://doi.org/10.1007/s12648-020-01923-z.

5. Al-Hossainy, A. F., and M. R. Eid. 2020. “Structure, DFT Calculations and Heat Transfer Enhancement in [ZnO/PG+H2O]C Hybrid Nanofluid Flow as a Potential Solar Cell Coolant Application in a Double-Tube.” Journal of Materials Science: Materials in Electronics 31: 15243–57, https://doi.org/10.1007/s10854-020-04089-w.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3