Mixing of Shear Thinning Fluids in Cylindrical Tanks: Effect of the Impeller Blade Design and Operating Conditions

Author:

Ameur Houari

Abstract

Abstract The 3D flow fields and power consumption within a cylindrical vessel stirred by a rotating turbine are numerically studied. Simulations are performed to determine the impact of changes in operating parameters on the mixing characteristics. Investigations are focused on effects of the impeller blade curvature, shaft speed and impeller rotational direction. The fluid simulated has a shear thinning behavior. Designing the blade in retreat shape seems very promising in term of power consumption since a reduction of Np is obtained with increasing blade curvature. In the positive rotational direction, the retreat bladed impeller yields highly radial flows with less power consumption than the straight bladed impeller. The 45° retreat blade gave an increase in the radial velocity by 39 %, compared with the straight blade. But, a better axial circulation is obtained with the straight blade. The comparison between the positive rotational direction (+w) and the negative rotational direction (–w) cases revealed that, a reduced mixing time can be obtained with a retreat bladed impeller operating in the negative rotational direction (–w), but with further power consumption.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference78 articles.

1. Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine;Chemical Engineering Science,2005

2. Power demand and mixing performance of coaxial mixers in a stirred tank with CMC solution;Chinese Journal of Chemical Engineering,2015

3. Study of various curved-blade impeller geometries on power consumption in stirred vessel using response surface methodology;Journal of the Taiwan Institute of Chemical Engineers,2013

4. Full Flow Field Computation of mixing in baffled stirred vessels;Chemical Engineering Research and Design,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3