Effect of Non-Ideal Mixing on Heat Transfer of non-Newtonian Liquids in a Mechanically Agitated Vessel

Author:

Billa Triveni,Vishwanadham B.

Abstract

Abstract Effect of non-ideal mixing on heat transfer phenomena is studied in an anchor agitated vessel processed with viscous Newtonian and non-Newtonian fluids. Influence of critical variables such as rotational speed and properties of the fluid on heat transfer coefficient and heat transfer area has been investigated. Based on the flow pattern generated by an anchor agitator, a multi parameter model for quantifying the extent of non-ideality is developed and the parameters of the model, fraction of well mixed zone and the exchange flow rate are evaluated on the basis of tracer response data. Heat transfer experiments are also conducted under unsteady state conditions using same agitated vessel under similar operating conditions using Castor oil, Castor oil methyl esters (CME) and carboxy methyl cellulose (CMC 0.5 %, 1 %), soap solution as process fluids. Based on the results obtained from this analysis, a commercial scale reactor of a capacity of 20 Kl for saponification of hydrogenated castor oil has been designed using different scaleup rules. Power per unit volume found to give desirable results as it gives acceptable values for heat transfer coefficient and power consumption. Equal power per unit volume gives good mixing and high heat transfer coefficient with slightly higher power consumption and the error involved in heat transfer area calculation is small giving optimum cost of the experimental unit.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference76 articles.

1. New Scale-Up and Design Method for Stirrer Agitated Batch Mixing Vessel;Chemical Engineering Sciences,1976

2. Non Ideal Flow Parameters for Viscous Fluids Flowing through Stirred Tanks;The Canada Journal of Chemical Engineering,1971

3. Agitation of Non-Newtonian Fluids;AIChE Journal,1957

4. Batch Heat Transfer Coefficients for Pseudoplastic Fluids in Agitated Vessel;Industrial Engineering Processing Design Developments,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3