An Effective Reaction Rate Model for Gas-Solid Reactions with High Intra-Particle Diffusion Resistance

Author:

Yang Wei1,Cloete Schalk1,Morud John1,Amini Shahriar1

Affiliation:

1. Department of Flow Technology, SINTEF Materials and Chemistry, S. P. Andersens veg 15B, 7031 Trondheim, Norway

Abstract

Abstract An approximate analytical expression for estimating the effectiveness factors of non-catalytic gas-solid reactions is proposed. The new expression is derived from the analytical solution for simple first order reactions (Ishida and Wen 1968. Comparison of kinetic and diffusional models for solid-gas reactions. AIChE Journal 14, 311–317. http://dx.doi.org/10.1002/aic.690140218). The scaled Thiele modulus concept is introduced to account for the variations of the reaction rate form that differs from the first order. The validity of the new expression is demonstrated for the reactions of different orders and of different forms via comparisons against a complete particle-reactor model using the collocation method for solving heat and mass fluxes inside the particles. In addition, the proposed approach is applied to redox reactions of ferric oxide where non-isothermal condition, net consumption of gaseous reactant, and parallel reactions are encountered. The results show that the effectiveness factor method compared well with the orthogonal collocation method over a wide range of Thiele moduli, reaction orders and reaction forms. Therefore, the proposed expression can serve as a generic replacement for more complex and computationally expensive combined particle-reactor modelling which is often employed in reactor systems with significant intra-particle diffusion resistances.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3