One-Pot Isomerization of n-Alkanes by Super Acidic Solids: Sulfated Aluminum-Zirconium Binary Oxides

Author:

Dhar Abhishek,Dutta Abhishek,Castillo-Araiza Carlos O.,Suárez-Toriello V.A.,Ghosh Dhananjoy,Raychaudhuri Uttam

Abstract

Abstract Super acidic nanostructured sulfated aluminum-zirconium binary oxides in mole ratios of Zr4+: Al3+ as 2:1 (SAZ-1), 1:1 (SAZ-2), 1:2(SAZ-3) and the reference catalyst super acidic sulfated zirconia (SZ) were synthesized by a precipitation method. Firstly, the catalytic performance of these four catalysts was evaluated during the isomerization of n-hexane to 2-methyl pentane and 3-methyl pentane, n-heptane and n-octane to their corresponding branched chain isomers at low temperature and pressure conditions (40°C and 1 atm). SAZ-1 performed the highest active and selective isomerization of n-hexane, n-heptane, and n-octane into their corresponding branched chain isomers. The catalytic activity of the reference catalyst SZ was the lowest among the four synthesized catalysts. TEM analysis applied to SAZ-1 and SZ indicated the presence of particle-bulks having average size of 20 nm; moreover, these materials presented an amorphous nature, having no particular surface morphology. XRD confirmed the amorphous structure of SAZ-1 and SZ as well as indicated their internal phase structure. FTIR generated ideas about different linkages and bond connectivities between atoms and groups in SAZ-1 and SZ. Ammonia-TPD of these two materials confirmed the higher super acidic nature of SAZ-1 and lower super acidic nature of SZ. Catalyst evaluation and characterization allowed to propose a reaction mechanism, elucidating a possible role of Brønsted and Lewis acid sites on the studied reaction-catalyst, being the former active sites the main factor leading to isomerization reaction. AFM and SEM pictures indicated the nature of the surface of the catalysts. Nevertheless, SEM analysis before and after the reaction displayed that catalyst morphology was modified and could influence the activity of the catalyst. The use of SAZ-1 is cost saving as well as energy saving.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference94 articles.

1. The Hydoisomerization of Petroium Naphta by Pt-Doped G-Alumina catalysts: synthesis, characterization and mechanistic study;International Journal of Chemical and Analytical Science,2012

2. An in Situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite;Journal of Colloid and Interface Science,1999

3. Isomerization of N-pentane catalyzed by acidic Chloroaluminate ionic liquids;Industrial & Engineering Chemistry Research,2008

4. Acid sites in sulfated and metal-promoted zirconium dioxide catalysts;Journal of Catalysis,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3