3D virtual full-loop CFD simulation of industrial two-stage FCC reaction–regeneration system

Author:

Zhong Hanbin1,Chen Jing2,Gao Fei2,Zhang Juntao1,Zhu Yuqin1,Niu Ben1

Affiliation:

1. Engineering Research Center of Low Carbon Energy & Chemical, College of Chemistry and Chemical Engineering, Xi’an Shiyou University , Xi’an , Shaanxi , 710065 , China

2. Petrochemical Research Institute of PetroChina , Beijing , 102206 , China

Abstract

Abstract The 3D virtual full-loop CFD simulation method with two-fluid model (TFM) was developed to model an industrial two-stage FCC reaction–regeneration system. The virtual connections (mass, species, and energy) between riser reactors, disengager, stripper, and regenerator were realized by defining user-defined functions (UDFs) for boundary conditions according to the reality. Five correction factors were used to correct the reaction rates in the 14-lump FCC reaction kinetics, and two correction factors were used to correct the FCC reaction heat in the first and second riser reactors. As a result, the whole FCC reaction–regeneration system was successfully modeled in one single CFD case. A thorough and comprehensive view of the performance of reaction–regeneration system was obtained by the 3D virtual full-loop CFD simulation, which is helpful for the operating and optimization of FCC unit. The major predicted results were in a good agreement with the industrial data. The effects of operating conditions were also investigated by changing regenerated temperature, catalyst to oil (CTO) ratio, and process capacity.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3