Affiliation:
1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai200237, People’s Republic of China
Abstract
AbstractThe effect of competitive adsorption on the catalytic performance of H3PMo12O40@C catalyst for producing 2-nitro-4-methylsulfonylbenzoic acid (NMSBA) from the oxidation of 2-nitro-4- methylsulfonyltoluene (NMST) by oxygen in acetic acid has been investigated. Six kinds of acids were added into the impregnation solution as competitive adsorbates for phosphomolybdic acid in the preparation of H3PMo12O40@C catalyst. H2SO4, HCl, HNO3, CH3COOH and H2C2O4 are beneficial to improving the catalytic activity of the H3PMo12O40@C catalyst. The corresponding optimum impregnation concentrations for H2SO4, HCl, HNO3, CH3COOH and H2C2O4 are 0.4, 0.3, 0.3, 1.0 and 0.3 mol L−1, respectively. The addition of H3PO4 exerts a negative effect on the catalytic capability of H3PMo12O40@C catalyst. The results of TEM characterization show that good dispersion of H3PMo12O40 on the surface of the H3PMo12O40@C catalyst is beneficial to ameliorating the catalytic ability of H3PMo12O40@C catalyst in the production of NMSBA from NMST by oxygen in acetic acid. The results of NH3-TPD indicate that the acidity of the H3PMo12O40@C also favors the improvement of the catalytic capability of H3PMo12O40@C in the oxidation of NMST to NMSBA.
Subject
General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献