Adsorption of Hexavalent Chromium by Eucalyptus camaldulensis bark/maghemite Nano Composite

Author:

Erkurt Fatma Elcin,Balci Behzat,Turan Emine Su

Abstract

Abstract In the present study, Eucalyptus camaldulensis bark/maghemite composite (ECMC) was used for potential application as a low-cost adsorbent for the removal of Cr(VI) from aqueous solution. The structural characterization, morphology and elemental analysis of ECMC were performed by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) and X-ray Diffraction (XRD). The effects of various independent parameters, contact time, initial Cr(VI) concentration, temperature, pH, and adsorption were investigated. It was found that the adsorption capacity of ECMC increases with increasing Cr(VI) concentration and temperature. The optimum pH was found to be 2 for the removal of Cr(VI) by ECMC. The adsorption capacity was found to be 70.1 mg/g with 0.1 g ECMC at pH 2 and 30 °C. Additionally, 10 and 50 mg/L Cr(VI) were removed from 100 mL aqueous solution by 0.1 g ECMC with 99 % and 93.46 % removal efficiencies, respectively. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanovic, Smith, Koble Korringen, Vieth-Sladek and Sips Isotherm Models were applied to the experimental data to understand the adsorption mechanism better. The Freundlich Isotherm Model described the adsorption process better (R2 = 0.991) among the other isotherms studied.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference144 articles.

1. Adsorption of Cr(VI) Using Thermally Activated Weed Salvinia Cucullata;Chemical Engineering Journal,2008

2. Adsorption Isotherm Modeling of Phenol onto Natural Soils – Applicability of Various Isotherm Models;International Journal of Environmental Research and Public Health,2012

3. Adsorption Isotherms and Thermodynamics of α-lactalbumin on an Anionic Exchanger;Fluid Phase Equilibri,2013

4. Adsorption from Theory to Practice;Advances in Colloid and Interface Science,2001

5. The Adsorption of Gasses on Plane Surfaces of Glass, Mica and Platinium;Journal of the American Chemical Society,1918

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3