Tuning parameters for the synthesis of MIL-53(Al): Mn doped MIL-53(Al) as a high potential catalyst for methanol dehydration

Author:

Kazemzadeh Nasrin1,Halladj Rouein1,Askari Sima2,Kia Raza1

Affiliation:

1. Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran

2. Department of Chemical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran

Abstract

Abstract Recently, many studies are dealing with developments of Metal-Organic Frameworks (MOFs), especially MIL-53(Al), which shows high thermal and mechanical stability. Among these, optimizing the synthesis condition of MIL-53(Al) to obtain appropriate characteristics has attracted much attention in academia and the industry. Here, the effect of synthesis time and ligand to metal molar ratio on the hydrothermal synthesis of MIL-53(Al) are pursued. The synthesized MIL-53(Al) samples are characterized by X-ray diffraction (XRD), the Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), thermal gravimetric analysis (TGA), and nitrogen adsorption-desorption technique (BET). The present study shows that MIL-53(Al) can be conventionally synthesized with a high yield within a shorter reaction time than the previous studies. Furthermore, the catalytic activity of the optimized MIL-53(Al) in the pure and Mn-doped form is studied in a methanol dehydration reaction. It is thus inferred that this popular MOF in the Mn/MIL-53(Al) form has a high activity and DME selectivity during methanol conversion. Our present results confirm the merits of employing the MIL-53(Al) as a catalyst in methanol to DME conversion, which can be an avenue for the practical application of acidic catalyst.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3