Study of inclusions-removal and slag-metal dispersion phenomenon in gas-stirred ladle

Author:

Liu Yong1,Cheng Shusen1,Liu Tong1

Affiliation:

1. School of Metallurgical and Ecological Engineering , University of Science and Technology Beijing , Beijing 100083 , China

Abstract

Abstract The slag-metal interface serves as a crucial locus for both chemical reactions and the adsorption of inclusions during secondary refining. This study first comprehensively reviews the methods of inclusions removal and then establishes a cold-state experiment using a water-oil system to reappear the phenomenon of slag-metal dispersion and inclusion adsorption. The distribution of slag droplets under varying slag volumes is analyzed in terms of the effect of bottom blow rates. Simultaneously, the volumetric fraction of oxygen on the slag-eye surface is analyzed. The result proved that the increase in oil layer thickness or the gas flow rate increase the volume of entrained oil. The dimensionless depth of entrained droplets was positively associated with gas flow rate or oil thickness. The dimensionless depth of “large droplets” and “small droplets” was in the range of 0–25 % and 0–60 %, respectively. Moreover, analysis of the gas composition above the slag-eye in a water-oil system is used to determine the degree of secondary oxidation. The oxygen volume fraction over the surface of the slag-eye decreases with the increase of gas flow rate. The oxygen volume fraction over the surface of the slag-eye is 1.51 % when the gas flow rate is 9 L/min.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3