Computational analysis of the particle size effect on the pressure profiles and type of flow regimes of TiO2 microparticles in a fluidized bed

Author:

Bahramian Alireza1

Affiliation:

1. Department of Chemical Engineering , Hamedan University of Technology , P.O. Box, 65155 Hamedan , Iran

Abstract

Abstract The effect of particle size on the pressure profiles and flow regimes of the bed containing TiO2 microparticles (MPs) was investigated in a fluidized bed. The fluidization behavior of particles with mean diameters, d p , of 170, 200, 225, and 300 μm at different gas velocities, U g , was investigated both experimental and computational viewpoints. A computational fluid dynamic (CFD) model was developed by the Eulerian–Eulerian approach to evaluate the sensitivity of the Syamlal–O’Brien, and Gidaspow drag models on the predicted results of the bed pressure profiles. The results showed that with increasing particle size, the amplitude of pressure fluctuations increases and the type of flow regime in the bed tended from bubbling to slugging flow regime. The error analysis showed that the use of the Gidaspow model led to more accurate results than the Syamlal–O’Brien model in predicting the bed pressure drop and pressure fluctuations in the slugging flow regime. However, the Syamlal–O’Brien model was more suitable for predicting the pressure profiles in the bubbling flow regime. The results were more suitable for the bed containing particles of 300 μm than the beds with d p  ≤ 225 μm. The highest and lowest deviations between the experimental data and simulation outputs were obtained at U g of 0.295 and 0.650 m/s, respectively. The findings confirmed that the mutual effects existed between the d p pressure profiles, and the type of flow regimes in the bed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3