Electrochemical recovery of Ni metallic in molten salts from spent lithium-ion battery

Author:

Liang Jinglong1,Wang Jing1,Li Hui1,Li Chenxiao1,Yan Hongyan1,Cao Weigang1,Wang Hongli1,Wang Le1,Reddy Ramana G.2

Affiliation:

1. Key Laboratory of Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and Energy, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, PR China

2. Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, Al, 35487, USA

Abstract

AbstractMassive deployment of lithium-ion battery inevitably causes a large amount of solid waste. To be sustainably implemented, technologies capable of reducing environmental impacts and recovering resources from spent lithium-ion battery have been an urgent task. The electrochemical reduction of LiNiO2 to metallic nickel has been reported, which is a typical cathode material of lithium-ion battery. In this paper, the electrochemical reduction behavior of LiNiO2 is studied at 750 °C in the eutectic NaCl-CaCl2 molten salt, and the constant cell voltage electrolysis of LiNiO2 is carried out. The results show that Ni(III) is reduced to metallic nickel by a two-step process, Ni(III) → Ni(II) → Ni, which is quasi-reversible controlled by diffusion and electron transfer. After electrolysis for 6 h at 1.4 V, the surface of LiNiO2 cathode is reduced to metallic nickel, with NiO and a small amount of Li0.4Ni1.6O2 detected inside the partially reduced cathode. After prolonging the electrolysis time to 12 h, LiNiO2 is fully electroreduced to metallic nickel, achieving a high current efficiency of 98.60%. The present work highlights that molten salt electrolysis could be an effective protocol for reclamation of spent lithium-ion battery.

Funder

National Natural Science Foundation of China

Hebei Province Graduate Innovation Program

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3