RTD Measurement, Modeling, and Analysis of Liquid Phase of Three-Tube Industrial Pulp Digester

Author:

Sheoran Meenakshi,Chandra AvinashORCID,Ahuja Sanjeev,Bhunia Haripada,Pant Harish J.

Abstract

Abstract Residence-time distribution (RTD) experiments were performed to analyze an industrial scale three-tube series continuous pulping digester’s hydrodynamic performance. An impulse of radiotracer 82Br (γ energy source) was introduced at the inlet of the first tube. The radiotracer concentration in the liquid phase was traced at the outlet of each tube. The input behavior of the radiotracer converted to a non-ideal pulse tracer input for the second and third tubes of the digester. Numerical convolution is adopted to deal with the non-ideal pulse input of the radiotracer. A modeling procedure for determining the RTD from the outlet tracer concentration data is proposed. A plug flow component followed by axial dispersion model is considered, and is adjusted after its convolution with the inlet tracer concentration data to obtain the RTD of the individual tubes. The obtained RTD data are analyzed to explain the flow behavior, degree of dispersion, and flow abnormalities existing in the digester. The mean residence-time (MRT), and dispersion number are estimated for the model components for the three tubes. The vessel dispersion number is found to decrease from tube 1 to tube 3. Overall, the conversion of the highly dispersed flow regime into the plug-flow regime is observed in the whole digester.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference46 articles.

1. Effect of Screw Profile on Residence Time Distribution and Starch Gelatinization of Rice Flour during Single Screw Extrusion Cooking;Journal of Food Engineering,2004

2. Application of 140la and 24na as Intrinsic Radiotracers for Investigating Catalyst Dynamics in FCCUs;Applied Radiation and Isotopes,2009

3. Laboratory Experiments and Modeling for Industrial Radiotracer Applications;Applied Radiation and Isotopes,2010

4. Residence Time Distribution in Rapid Multiphase Reactors;Journal of Industrial and Engineering Chemistry,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3