Author:
Behnam Mohsen,Dixon Anthony G.
Abstract
Abstract
The deactivation of catalysts is an important problem in the strongly endothermic steam methane reforming reaction. The local carbon laydown on the catalyst surface may lead to local hot spots, breakage of catalyst particles, and blockage of the reactor tube. Local carbon formation was studied at different operating conditions using particle-scale 3D CFD models of full and hollow cylindrical particles. The results showed that a low steam-to-carbon ratio may cause local carbon formation at high temperature (\gt900K) on the surface of the catalyst particle. The risk of carbon formation was highest at the surface hot spots and inside the catalyst particles where the methane cracking reaction rate exceeded those of the gasification reactions. The internal surface in the 1-hole catalyst particle showed favorable conditions for carbon formation and deposition, similarly to the external surface of the particle. 3D CFD simulations of a 0.76 m length of a full tube of spherical catalyst particles with tube-to-particle diameter ratio 5.96 showed that the rate of carbon formation was much higher next to the heated tube wall and decreased significantly from the tube wall to the tube center.
Subject
General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献