Instabilities of a freely moving spherical particle in a Newtonian fluid: Direct Numerical Simulation

Author:

Li Yuxiu12ORCID,Tiwari Shashank S.34ORCID,Evans Geoffrey M.5,Nandakumar Krishnaswamy4,Joshi Jyeshtharaj B.367ORCID

Affiliation:

1. School of Material and Energy, Guangdong University of Technology , Guangzhou , China

2. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter , Guangzhou , China

3. Department of Chemical Engineering , Institute of Chemical Technology , Mumbai , India

4. Department of Chemical Engineering , Louisiana State University , Baton Rouge , USA

5. Department of Chemical Engineering , The University of Newcastle , Newcastle , Australia

6. Homi Bhabha National Institute , Mumbai , India

7. J. B. Joshi Research Foundation , Mumbai , India

Abstract

Abstract Direct Numerical Simulations (DNS) were carried out for a freely falling/rising rigid particle in an otherwise quiescent fluid, using a non-Lagrangian multiplier based fictitious domain (FD) method. Validation studies showed that the proposed FD based DNS are in good agreement with the existing experimental results in the transition regime of falling/rising spheres. Simulations done in the transitional regime (50 < Reynolds number (Re) < 1800 and solid-to-fluid density ratios Γ = ρ p / ρ f ${\Gamma}={\rho }_{p}/{\rho }_{f}$ from 0.08 to 4), confirmed that (i) a falling spherical particle (Γ = 4) exhibits a helical trajectory in the range 270 < Re < 320, and (ii) a rising particle (Γ = 0.5) shows a zig-zagging trajectory in the same range of Re. This finding closes the uncertainty to the question as to whether or not rising/falling particles exhibit a helical and a zig-zagging trajectory. In addition to this, a total of seven distinctive flow regimes were identified, which are as follows: (I) vertical straight path (II) steady oblique path (III) Wavy oblique path (IV) zig-zagging path (for 0.08 < Γ < 1) (V) helical path (for 1 < Γ < 4) (VI) early transition to chaos and (VII) chaotic regime. Regime IV occurs only for light particles (Γ < 1), whereas Regime V occurs only for heavy particles (Γ > 1). Fast Fourier Transform (FFT) analysis characterized the presence of a bimodal frequency similar to that exhibited by flow past an isolated stationary bluff body.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3