CFD Modeling of Flame Structures in a Gas Turbine Combustion Reactor: Velocity, Temperature, and Species Distribution

Author:

Bahramian Alireza,Maleki Mozhdeh,Medi Bijan

Abstract

Abstract This paper presents the computational fluid dynamics (CFD) simulation of a gas turbine combustor with methane-air fuel at atmospheric pressure. The velocity fields, temperature profile and species distributions have been numerically studied. The mathematical combustion models, namely Eddy Dissipation Concept (EDC) model coupled with detailed kinetic mechanism, and Finite Rate/Eddy Dissipation (FR-ED) model coupled with a simple global kinetic mechanism, have been used in numerical analysis considering a two-step oxy-combustion reaction kinetics model. Moreover, a series of CFD results with consideration of EDC model have been obtained by two- and three-dimensional simulations. An error analysis showed that the 3-D simulation with EDC model can accurately predict the velocity components, temperature profile, and species distributions of the combustion process and allow detailed investigation of the flame structure. The CFD results are in agreement with the experimental data obtained from laser measurements.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference80 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3