Green hydrogen production in Uruguay: a techno-economic approach

Author:

Bouzas Betiana1,Teliz Erika12,Díaz Verónica1

Affiliation:

1. GIIE, Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República , J. Herrera y Reissig 565, CP 11300 , Montevideo , Uruguay

2. Laboratorio de Electroquímica Fundamental, GIIE, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República , Iguá 4225, CP 11400 , Montevideo , Uruguay

Abstract

Abstract In 2015, the participants of the Paris Agreement collectively acknowledged the urgent need for immediate actions to decarbonize their national economies, with the aim of mitigating the adverse impacts of climate change. There is a call for policymakers to step up efforts to significantly reduce greenhouse gas (GHG) emissions in all economic sectors, with a focus on prioritizing options that can deliver substantial emission cuts. Some industry and transport subsectors present significant challenges in terms of technical and economic feasibility. Viable solutions for these sectors, known as “hard-to-abate” sectors, are limited. Green hydrogen has emerged as a promising alternative that is gaining increasing attention. It is poised to play a crucial role in transitioning towards a more sustainable future. There is a growing interest in green hydrogen among researchers, institutions, and nations, all committed to advancing its development, improving efficiency, and reducing costs. This paper explores the concept of green hydrogen, particularly its production processes that rely on renewable energy sources in Uruguay. It demonstrates the significant potential for green hydrogen production, facilitating the transition from fossil fuels to clean energy and promoting environmental sustainability through the widely accepted electrolysis process. Uruguay currently boasts a high percentage of renewable electricity generation (reaching 97 % in 2020). To support this further, there is a need to increase renewable energy capacity, which would impact the energy prices. The cost of energy accounts for more than 40 % of the levelized cost of hydrogen (LCOH) in all studied scenarios. Additionally, optimizing the costs associated with electrolysers, which can exceed 30 % of the LCOH in polymer electrolyte membrane (PEM) electrolysis, is crucial. This optimization is essential for positioning the country as a net exporter of green hydrogen. The range of LCOH values calculated in the different scenarios is between 2.11 USD/kg H2 and 4.12 USD/kg H2. According to updated specialized literature, achieving LCOH values under USD 1.4/kg H2 is essential for this goal.

Funder

Programa de Desarrollo de las Ciencias Básicas

Agencia Nacional de Investigación e Innovación

Comision Sectorial de Investigacion Cientifica CSIC Uruguay

Publisher

Walter de Gruyter GmbH

Reference39 articles.

1. IRENA, “Geopolitics of the energy transformation: the hydrogenfactor,” 2022. Available at: https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen.

2. BEN Balance Energético Nacional, 2023. Available at: https://ben.miem.gub.uy/balance.php.

3. WEO World Energy Outlook, 2022. Available at: https://www.iea.org/reports/world-energy-outlook-2022.

4. J. Chi and Y. Hongmeri, “Water electrolysis based on renewable energy to hydrogen production,” Chin. J. Catal., vol. 39, no. 3, pp. 390–394, 2018.

5. M. S. Delgado, “Desarrollo y validación de un modelo para la simulación de sistema de electrólisis alcalina para la producción e hidrógeno a partir de energías renovables,” Tesis Doctoral: Madrid, pp. 1–267, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3