Effect of La on the catalytic performance of mesoporous Ni/γ-Al2O3 catalysts for dry reforming of methane

Author:

Zhang Dong1,Cai Hongyan2,Chen Shengming1,Gou Zhenqiong1,Zhou Guilin13

Affiliation:

1. Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering , Chongqing Technology and Business University , 400067 , Chongqing , China

2. State Key Laboratory of Enhanced Oil Recovery , Research Institute of Petroleum Exploration & Development , 100083 , Beijing , China

3. Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education , Chongqing Technology and Business University , 400067 , Chongqing , China

Abstract

Abstract Mesoporous Ni/La2O3/γ-Al2O3 catalysts with different La contents (0, 0.5, 1.5, 2.5, 3.5, and 4.5 wt.%) were prepared by the step-by-step impregnation method. The physicochemical properties of the prepared Ni/La2O3/γ-Al2O3 catalysts were characterized by H2-TPR, XRD, BET, O2-TPO, and TG. The effect of La dosage on the catalytic performance of Ni/γ-Al2O3 catalyst for dry reforming of methane was further investigated. The results show that the La content has a significant effect on the reducibility of high-valence Ni species, specific surface area, pore size, and pore volume as well as the catalytic performances. The high-valence Ni species in the NL3.5A catalyst precursor has high reducibility. And the specific surface area, pore size and pore volume of the NL3.5A catalyst are 145.9 m2 g−1, 11.7 nm, and 0.47 cm3 g−1, respectively. The catalytic activity of the series of prepared mesoporous Ni/La2O3/γ-Al2O3 catalysts follows the order: NL3.5A > NL2.5A > NL4.5A > NL1.5A > NL0.5A > NL0A. Namely, the NL3.5A catalyst possesses the best catalytic activity. The CH4 and CO2 conversions of NL3.5A catalyst are 61.6 and 39.1% at 600 °C, respectively. Additionally, it maintains a superior recycle capability for dry reforming of methane reaction because of the high coke resistance compared with the Ni/γ-Al2O3 catalyst.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3