Self Diffusivity of n-Dodecane and Benzothiophene in ZSM-5 Zeolites. Its Significance for a New Catalytic Light Diesel Desulfurization Process

Author:

Ferreira María L.,Al-Bogami Saad A.,de Lasa Hugo I.

Abstract

Abstract This study provides theoretical support to a recent promising ZSM5 catalyst used for the selective desulfurization of light diesel type compounds (Al-Bogami and de Lasa 2013; Al-Bogami, Moreira, and de Lasa 2013). With this end, Molecular Dynamics (MD) simulations employing a rigid silicalite structure are developed to calculate self-diffusivities of n-Dodecane (n-C12) and Benzothiophene (BZT) in a silicalite structure. The simulations are performed at 573 K, 623 K, 673 K and 723 K at a fixed loading of 1 molecule per unit cell to study the temperature effect on diffusivity coefficient. In addition, a number of simulations which are developed to investigate four molecule loadings (corresponding to 0.25, 0.5, 0.75 and 1 molecule per zeolite unit cell) at 723 K. MD simulations, show a self diffusivity of BZT one order of magnitude higher than that of n-C12 self diffusivity at all temperatures investigated. This is the case in spite of BZT having a critical molecular diameter of 6 Å when compared to the 4.9 Å diameter of n-C12. In addition, the self diffusivity coefficient is found to increase with temperature for both n-C12 and BZT. Furthermore, the results obtained show that the self diffusivity of n-C12 decreases as the number of n-C12 molecules per zeolite unit cell increases. On the other hand, it is observed that the self-diffusivity coefficient for BZT remains fairly constant and drops at a loading of 1 molecule per zeolite unit cell only. These coefficients show that differences in n-C12 and benzothiophene diffusivities favours desulfurization with selective benzothiophene adsorption and sulfur species removal as coke (Al-Bogami and de Lasa 2013).

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference106 articles.

1. Simulation of Adsorption and Diffusion of Hydrocarbons in Zeolites;Faraday Discuss,1997

2. Thiophene Conversion under Mild Conditions over a ZSM-5 Catalyst;Chem. Eng. Sci,2009

3. Catalytic Desulfurization of Gasoline via Dehydrosulfidation;Ind. Eng. Chem. Res,2006

4. A molecular dynamics study of hydrocarbons adsorbed in silicalite;Zeolites,1995

5. Synthetic Their Industrial Environmental Applications in Conference;Bogdanov;Zeolites International Science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3