Emission and performance investigation of mango seed oil biodiesel supplied with n-pentanol and n-hexanol additives and optimization of fuel blends using modified deep neural network

Author:

Rami Reddy S.12,Sarangi Saroj Kumar2

Affiliation:

1. Department of Mechanical Engineering , Lakireddy Bali Reddy College of Engineering , Mylavaram 521230 , AP , India

2. Department of Mechanical Engineering , 230635 National Institute of Technology Patna , Patna , Bihar , India

Abstract

Abstract In this study, the emission and performance characteristics of single-cylinder diesel engines were tested using various biodiesel blends prepared by mixing diesel with mango seed oil biodiesel (MSOB). Furthermore, the effect of n-amyl and n-hexanol alcohol additions on the performance and emission results of manufactured biodiesel blends is investigated and compared with diesel fuel. On the other hand, a hybrid deep neural network (DNN) based on the manta ray foraging optimization (MRFO) method is developed to forecast ideal biodiesel blends in order to reduce emissions from diesel engines while improving performance. The optimal brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) for this study were 32.3916 % for 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel and 0.0453 kg/kWh for 75 % diesel + 20 % MSOB + 5 % n-amyl fuel, respectively. The optimal emissions from the test engine were 0.1034 % CO from 60 % diesel + 20 % MSOB + 20 % n-hexanol and 28.886 ppm HC from 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel. The optimal smoke and NO x levels are achieved with a blend of 60 % diesel, 20 % MSOB, 5 % n-amyl, and 5 % n-hexane. Moreover, the developed DNN-MRFO achieved 0.9979, 0.9992 and 0.9975 overall regression coefficients during training, validation and testing. The root mean square error (RMSE) of DNN-MRFO also ranges from 0.019 to 0.032.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of hexanol and its blends in diesel engines;Energy Conversion and Management;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3