Analysis of fluid retention zones in heat exchangers with segmental baffle and helical baffle

Author:

Gu Xin1,Li Ning1,Chen Cheng1,Zhang Qianxin1,Wang Guan1,Wang Yongqing1ORCID

Affiliation:

1. School of Mechanical and Power Engineering , Zhengzhou University , Zhengzhou , China

Abstract

Abstract By using the residence time distribution method (RTD), the fluid retention zones in the shell and tube heat exchanger with segmental baffle (STHX-SB) and the heat exchanger with helical baffle (STHX-HB) are compared and discussed. The flow pattern and fluid retention zone of the similar double helical flow heat exchanger (STHX-SDH) were analyzed by using the same method. The result shows the spiral flow can reduce the fluid retention zone. The flow pattern in the STHX-SDH likes a double helical shape and leads to a very small fluid retention zone. According to the simulation results, the location of the fluid retention zone of STHX-SDH is determined. The verification line method and the zone assessment method were adopted, to discuss the flow velocity of each point on the verification line and the average flow velocities of the selected zones. The change laws of the flow velocities on the verification lines and the average flow velocities of the selected zones at different Reynolds numbers were compared. The result reveals the distribution of the fluid retention zone of the STHX-SDH and the sensitivity of each fluid retention zone to the Reynolds number. By optimization of the angle of the baffle, the volume fraction of the fluid retention zone is reduced to 1.61%, and the heat transfer performance is improved by 13.23%. It is verified that reducing the fluid retention zone can effectively enhance the heat transfer performance. This research method provides a theoretical basis for reducing the fluid retention zone of the heat exchanger and enhancing heat transfer performance.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3