Assessment of effectiveness factor in porous catalysts under non-symmetric external conditions of concentration

Author:

Prenesti Giuseppe1,Azzato Giulia1,Cassano Katia1,De Marco Giuseppe2,Caravella Alessio1ORCID

Affiliation:

1. Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES) , University of Calabria , Via P. Bucci, Cubo 42C, 87036 (CS) , Rende , Italy

2. Information Technology Center (ICT) , University of Calabria , Via P. Bucci, Cubo 22B, 87036 (CS) , Rende , Italy

Abstract

Abstract the present paper, the effectiveness factor of porous catalytic particles is evaluated in the absence of boundary conditions symmetry over the external surface by computational fluid dynamic (CFD) techniques. The first-order kinetics of decane oxidation, already evaluated experimentally, is taken as a representative reaction. Our study arises from the fact that, in the open literature, the effectiveness factor is usually calculated considering conditions of symmetry of concentration field around particles. However, depending on the fluid dynamics of the system, such conditions are not always established and, thus, our work aims at studying for the first time the behaviour of particle catalysts with non-uniform concentration fields over the surface. In particular, the effectiveness factor of the particles in a catalytic layer is calculated in the absence of symmetry by changing several parameters (temperature, tortuosity and mean pore diameter of particle) using two different methods, named Sphere-by-Sphere (SbS) and Equisized-Volume (EV), respectively. The results of these two methods are then compared to the theoretical one obtained in the presence of spherical symmetry. As a main result, we found that, for moderately low values of Thiele modulus (<1.3 ca.), the analytical expression of the effectiveness factor obtained under spherical symmetry can be also applied in non-symmetric conditions. On the contrary, this cannot be done for higher values of Thiele modulus, for which we propose an empirical correlation of the effectiveness factor based on a corrected Thiele modulus. The efficacy of our approach is stated by the fact that pseudo-homogeneous-mode simulations of the heterogeneous system show results that match very well those obtained in heterogeneous mode, with an important reduction of calculation time and memory. The presented methodology can be also applied to n-order kinetics.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3