Study of Cu-Zn and Au/TiO2 Catalysts on Anodized Aluminum Monoliths for Hydrogen Generation and Purification

Author:

Adrover E.1,Boldrini D.1,Divins N.J.2,Casanovas A.2,Tonetto G.1,López E.1,Llorca J.2

Affiliation:

1. Planta Piloto de Ingeniería Química (CONICET–UNS), Bahía Blanca, Argentina

2. Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

Abstract This work reports the preparation of Cu-Zn and Au/TiO2 catalysts on anodized aluminum monoliths (AAM). The structured catalysts were studied for the generation of H2 by methanol steam reforming (MSR) and its purification by preferential oxidation of CO (CO-PrOx). Initially, it was possible to generate a surface with whiskers and larger surface area by hydrothermal treatment of the AAM. Subsequently, the structured catalysts were synthesized by incipient wetness impregnation (IWI) and hydrothermal synthesis (HS). IWI synthesis allowed for the deposition of a larger amount of catalytic material than HS, with very good adhesion. The TiO2-IWI structured catalyst presented a homogeneous catalytic coating, with the presence of agglomerated particles. On the other hand, Cu-Zn-IWI showed good dispersion of the deposited particles with a homogeneous surface coating. EDX analysis corroborated the presence of Ti, Cu and Zn in all the catalytic surfaces. The incorporation of Au over TiO2-IWI structured catalysts was successfully performed by IWI using a colloidal solution of gold nanoparticles. MSR was studied over the developed metallic monoliths functionalized with Cu-Zn by the IWI method. The samples showed promising results in terms of activity, selectivity, and stability. Both diluted and concentrated methanol + water feeds were assayed. Complete methanol conversion was achieved for the diluted feed. Maximum methanol conversions of 55 % with 60 % H2 yield were measured when the concentrated feed was selected. Promising results were also achieved for the Au-based structured catalysts in the CO-PrOx in an H2-rich atmosphere. Although CO conversions of approximately 60 % were achieved, operating with higher catalyst loadings would be recommended to reach the high CO conversions required for PrOx catalysts.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3