Affiliation:
1. Shanxi Mineral Resources Survey and Monitoring Center , No. 3, Wangjing Road, Taiyuan , Taiyuan , China
Abstract
Abstract
Although weighted total least-squares (WTLS) adjustment within the errors-in-variables (EIV) model is a rigorous method developed for parameter estimation, its exact solution is complicated since the matrix operations are extremely time-consuming in the whole repeated iteration process, especially when dealing with large data sets. This paper rewrites the EIV model to a similar Gauss–Markov model by taking the random error of the design matrix and observations into account, and reformulates it as an iterative weighted least-squares (IWLS) method without complicated theoretical derivation. IWLS approximates the “exact solution” of the general WTLS and provides a good balance between computational efficiency and estimation accuracy. Because weighted LS (WLS) method has a natural advantage in solving the EIV model, we also investigate whether WLS can directly replace IWLS and WTLS to implement the EIV model when the parameters in the EIV model are small. The results of numerical experiments confirmed that IWLS can obtain almost the same solution as the general WTLS solution of Jazaeri [21] and WLS can achieve the same accuracy as the general WTLS when the parameters are small.
Subject
Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献