On the fast approximation of point clouds using Chebyshev polynomials

Author:

Weisbrich Sven1ORCID,Malissiovas Georgios1ORCID,Neitzel Frank1ORCID

Affiliation:

1. 26524 Technische Universität Berlin , Institute of Geodesy and Geoinformation Science , Strasse des 17. Juni 135 , Berlin , Germany

Abstract

Abstract Suppose a large and dense point cloud of an object with complex geometry is available that can be approximated by a smooth univariate function. In general, for such point clouds the “best” approximation using the method of least squares is usually hard or sometimes even impossible to compute. In most cases, however, a “near-best” approximation is just as good as the “best”, but usually much easier and faster to calculate. Therefore, a fast approach for the approximation of point clouds using Chebyshev polynomials is described, which is based on an interpolation in the Chebyshev points of the second kind. This allows to calculate the unknown coefficients of the polynomial by means of the Fast Fourier transform (FFT), which can be extremely efficient, especially for high-order polynomials. Thus, the focus of the presented approach is not on sparse point clouds or point clouds which can be approximated by functions with few parameters, but rather on large dense point clouds for whose approximation perhaps even millions of unknown coefficients have to be determined.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3