On some summation formulas

Author:

Kim Taekyun1,Kim Dae San2,Lee Hyunseok1,Kwon Jongkyum3

Affiliation:

1. Department of Mathematics, Kwangwoon University , Seoul 139-701 , Republic of Korea

2. Department of Mathematics, Sogang University , Seoul 121-742 , Republic of Korea

3. Department of Mathematics Education, Gyeongsang National University , Jinju 52828 , Republic of Korea

Abstract

Abstract In this note, we derive a finite summation formula and an infinite summation formula involving Harmonic numbers of order up to some order by means of several definite integrals.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference5 articles.

1. E. T. Whittaker and G. N. Watson, A course of modern analysis, an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.

2. G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.

3. S. Araci, M. Acikgoz, C. Özel, H. M. Srivastava, and T. Diagana, Recent trends in special numbers and special functions and polynomials, Int. J. Math. Math. Sci. 2015 (2015), 573893.

4. T. Kim and D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys. 28 (2021), no. 3, 342–355.

5. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Translated by John Wermer, Chelsea Publishing Company, New York, N.Y., 1949.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lerch-harmonic numbers related to Lerch transcendent;Mathematical and Computer Modelling of Dynamical Systems;2023-12-12

2. Blending-NeRF: Text-Driven Localized Editing in Neural Radiance Fields;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. The inverses of tails of the generalized Riemann zeta function within the range of integers;AIMS Mathematics;2023

4. Some identities on generalized harmonic numbers and generalized harmonic functions;Demonstratio Mathematica;2023-01-01

5. A short note on a extended finite secant series;AIMS Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3