Small perturbations of critical nonlocal equations with variable exponents

Author:

Tao Lulu1,He Rui1,Liang Sihua1

Affiliation:

1. College of Mathematics, Changchun Normal University , Changchun 130032 , Jilin , PR China

Abstract

Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: ( Δ ) p ( x , y ) s u = λ f ( x , u ) + u q ( x ) 2 u in Ω , u = 0 in R N \ Ω , \left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right,\end{array}\right. where Ω R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, N 2 N\ge 2 , p C ( Ω × Ω ) p\in C(\Omega \times \Omega ) is symmetric, f : C ( Ω × R ) R f:C\left(\Omega \times {\mathbb{R}})\to {\mathbb{R}} is a continuous function, and λ \lambda is a real positive parameter. We also assume that { x R N : q ( x ) = p s ( x ) } \left\{x\in {{\mathbb{R}}}^{N}:q\left(x)={p}_{s}^{\ast }\left(x)\right\}\ne \varnothing , and p s ( x ) = N p ˜ ( x ) ( N s p ˜ ( x ) ) {p}_{s}^{\ast }\left(x)=N\tilde{p}\left(x)/\left(N-s\tilde{p}\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( λ \lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function f f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of s = 1 s=1 and subcritical case.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3