Sampling and interpolation of cumulative distribution functions of Cantor sets in [0, 1]

Author:

Byars Allison1,Camrud Evan2,Harding Steven N.3,McCarty Sarah2,Sullivan Keith4,Weber Eric S.2

Affiliation:

1. Department of Mathematics, University of Wisconsin Madison, 480 Lincoln Drive , Madison , WI 53706 , USA

2. Department of Mathematics, Iowa State University, 411 Morrill Road , Ames , IA 50011 , USA

3. Department of Mathematics, Milwaukee School of Engineering, 500 E. Kilbourn Ave. , Milwaukee , WI 53202 , USA

4. Department of Mathematics, Concordia College, 901 8th St . S. Moorhead , MN 56562 , USA

Abstract

Abstract Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant Borel probability measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere intersection with respect to their corresponding invariant measures.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference26 articles.

1. J. Benedetto and P. J. S. G. Ferriera (Eds.), Modern Sampling Theory, Birkhauser Boston, Boston, MA, 2001.

2. A. Aldroubi and K. Gröchenig , Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), no. 4, 585–620.

3. J. E. Hutchinson , Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.

4. R. DiMartino and W. Urbina , On Cantor-like sets and Cantor-Lebesgue singular functions, arXiv:1403.6554, 2014.

5. R. A. Horn and C. R. Johnson , Matrix Analysis, 2nd edition, Cambridge University Press, Cambridge, 2013.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climatic Challenges of Quito;2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS);2023-07-04

2. Fourier Series for Fractals in Two Dimensions;Applied and Numerical Harmonic Analysis;2023

3. Constructing a Linearly Ordered Topological Space from a Fractal Structure: A Probabilistic Approach;Mathematics;2022-11-30

4. Persistence landscapes of affine fractals;Demonstratio Mathematica;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3