Ruled real hypersurfaces in the complex hyperbolic quadric

Author:

Lee Hyunjin1,Suh Young Jin2,Woo Changhwa3

Affiliation:

1. Department of Mathematics Education, Chosun University , Gwangju 61452 , Republic of Korea

2. Department of Mathematics and Research Institute of Real and Complex Manifolds, Kyungpook National University , Daegu 41566 , Republic of Korea

3. Department of Applied Mathematics, Pukyong National University , Busan 48547 , Republic of Korea

Abstract

Abstract In this article, we introduce a new family of real hypersurfaces in the complex hyperbolic quadric Q n = S O 2 , n o S O 2 S O n {{Q}^{n}}^{\ast }=S{O}_{2,n}^{o}/S{O}_{2}S{O}_{n} , namely, the ruled real hypersurfaces foliated by complex hypersurfaces. Berndt described an example of such a real hypersurface in Q n {{Q}^{n}}^{\ast } as a homogeneous real hypersurface generated by a A {\mathfrak{A}} -principal horocycle in a real form R H n {\mathbb{R}}{H}^{n} . So, in this article, we compute a detailed expression of the shape operator for ruled real hypersurfaces in Q n {{Q}^{n}}^{\ast } and investigate their characterizations in terms of the shape operator and the integrable distribution C = { X T M X ξ } {\mathcal{C}}=\left\{X\in TM| X\perp \xi \right\} . Then, by using these observations, we give two kinds of classifications of real hypersurfaces in Q n {{Q}^{n}}^{\ast } satisfying η \eta -parallelism under either η \eta -commutativity of the shape operator or integrability of the distribution C {\mathcal{C}} . Moreover, we prove that the unit normal vector field of a real hypersurface with η \eta -parallel shape operator in Q n {{Q}^{n}}^{\ast } is A {\mathfrak{A}} -principal. On the other hand, it is known that all contact real hypersurfaces in Q n {{Q}^{n}}^{\ast } have a A {\mathfrak{A}} -principal normal vector field. Motivated by these results, we give a characterization of contact real hypersurfaces in Q n {{Q}^{n}}^{\ast } in terms of η \eta -parallel shape operator.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference28 articles.

1. P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.

2. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.

3. B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246–266, DOI: https://doi.org/10.2307/1970441.

4. B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643–647, DOI: https://doi.org/10.2969/jmsj/02040643.

5. K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, J. Math. Soc. Japan 21 (1969), no. 2, 266–269, DOI: https://doi.org/10.2969/jmsj/02120266.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3