Affiliation:
1. School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University , Nanchang 330038 , Jiangxi , People’s Republic of China
2. School of Mathematics and Statistics, Wuhan University , Wuhan 430072 , Hubei , People’s Republic of China
Abstract
Abstract
Let
S
γ
,
A
,
B
∗
(
D
)
{S}_{\gamma ,A,B}^{\ast }\left({\mathbb{D}})
be the usual class of
g
g
-starlike functions of complex order
γ
\gamma
in the unit disk
D
=
{
ζ
∈
C
:
∣
ζ
∣
<
1
}
{\mathbb{D}}=\left\{\zeta \in {\mathbb{C}}:| \zeta | \lt 1\right\}
, where
g
(
ζ
)
=
(
1
+
A
ζ
)
∕
(
1
+
B
ζ
)
g\left(\zeta )=\left(1+A\zeta )/\left(1+B\zeta )
, with
γ
∈
C
\
{
0
}
,
−
1
≤
A
<
B
≤
1
,
ζ
∈
D
\gamma \left\in {\mathbb{C}}\backslash \left\{0\right\}\right,-1\le A\lt B\le 1,\zeta \in {\mathbb{D}}
. First, we obtain the bounds of all the coefficients of homogeneous expansions for the functions
f
∈
S
γ
,
A
,
B
∗
(
D
)
f\in {S}_{\gamma ,A,B}^{\ast }\left({\mathbb{D}})
when
ζ
=
0
\zeta =0
is a zero of order
k
+
1
k+1
of
f
(
ζ
)
−
ζ
f\left(\zeta )-\zeta
. Second, we generalize this result to several complex variables by considering the corresponding biholomorphic mappings defined in a bounded complete Reinhardt domain. These main theorems unify and extend many known results.
Reference36 articles.
1. E. Amini, M. Fardi, S. Al-Omari, and K. Nonlaopon, Duality for convolution on subclasses of analytic functions and weighted integral operators, Demonstr. Math. 56 (2023), 20220168, https://doi.org/10.1515/dema-2022-0168.
2. Y. Y. Lin and Y. Hong, Some properties of holomorphic maps in Banach spaces, Acta. Math. Sin. 38 (1995), 234–241 (in Chinese), https://doi.org/10.12386/A1995sxxb0024.
3. A. V. Boyd, Coefficient estimates for starlike functions of order α, Proc. Amer. Math. Soc. 17 (1966), no. 5, 1016–1018, https://doi.org/10.2307/2036080.
4. L. Bieberbach, Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, Sitzungsber Preuss Akad Wiss Phys. Math. Kl. 14 (1916), 940–955 (in German).
5. L. De Branges, A proof of the Bieberbach conjecture, Acta. Math. 154 (1985), 137–152, https://doi.org/10.1007/BF02392821.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献