Affiliation:
1. Department of Mathematics and Science Education, Sinop University , Sinop , Turkey
Abstract
Abstract
We consider the boundary value problem generated by a system of Dirac equations with polynomials of spectral parameter in the boundary condition. We investigate the continuity of the scattering function and provide Levinson-type formula, which shows that the increment of the scattering function’s logarithm is related to the number of eigenvalues of the boundary value problem.
Reference30 articles.
1. N. Levinson, On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase, Danske Vid. Selsk. Mat.-Fys. Medd. 25 (1949), no. 9, 29.
2. M. Klaus, On the Levinson theorem for Dirac operators, J. Math. Phys. 31 (1990), no. 1, 182–190, DOI: https://doi.org/10.1063/1.528858.
3. D. B. Hinton, M. Klaus, and J. K. Shaw, Levinson’s theorem and Titchmarsh-Weyl m(λ) theory for Dirac systems, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1–2, 173–186, DOI: https://doi.org/10.1017/S0308210500026743.
4. Q. G. Lin, Levinson theorem for Dirac particles in two dimensions, Phys. Rev. A 57 (1998), no. 5, 3478–3488, DOI: https://doi.org/10.1103/PhysRevA.57.3478.
5. Q. G. Lin, Levinson theorem for Dirac particles in one dimension, Eur. Phys. J. D 7 (1999), 515–524, DOI: https://doi.org/10.1007/s100530050379.