On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions

Author:

Olgar Hayati1

Affiliation:

1. Department of Mathematics, Faculty of Science and Arts, Tokat Gaziosmanpasa University , 60250 Tokat , Turkey

Abstract

Abstract The goal of this study is to analyse the eigenvalues and weak eigenfunctions of a new type of multi-interval Sturm-Liouville problem (MISLP) which differs from the standard Sturm-Liouville problems (SLPs) in that the Strum-Liouville equation is defined on a finite number of non-intersecting subintervals and the boundary conditions are set not only at the endpoints but also at finite number internal points of interaction. For the self-adjoint treatment of the considered MISLP, we introduced some self-adjoint linear operators in such a way that the considered multi-interval SLPs can be interpreted as operator-pencil equation. First, we defined a concept of weak solutions (eigenfunctions) for MISLPs with interface conditions at the common ends of the subintervals. Then, we found some important properties of eigenvalues and corresponding weak eigenfunctions. In particular, we proved that the spectrum is discrete and the system of weak eigenfunctions forms a Riesz basis in appropriate Hilbert space.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3