On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative

Author:

Vivas-Cortez Miguel1,Árciga Martin Patricio2,Najera Juan Carlos2,Hernández Jorge Eliecer3

Affiliation:

1. Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Físicas y Matemáticas, Av. 12 de Octubre 1076, Apartado: 17-01-2184 , Quito 170143 , Ecuador

2. Facultad de Matemáticas, Universidad Autónoma de Guerrero , Chilpancingo , Guerrero , Mexico

3. Departamento de Técnicas Cuantitativas, Universidad Centroccidental Lisandro Alvarado, Decanato de Ciencias Económicas y Empresariales, Edf. Los Militares, Ofc. 2, ZP: 3001 , Barquisimeto , Venezuela

Abstract

Abstract The fundamental objective of this article is to investigate about the boundary value problem with the uses of a generalized conformable fractional derivative introduced by Zarikaya et al. (On generalized the conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792–799, http://jaem.isikun.edu.tr/web/images/articles/vol.9.no.4/11.pdf). In the development of the this article, by using classical methods of fractional calculus, we find a definition of the generalized fractional Wronskian according to the fractional differential operator defined by Zarikaya, a fractional version of the Sturm-Picone theorem, and in addition, the stability criterion given by the Hyers-Ulam theorem is studied with the use of the aforementioned fractional derivatives.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference35 articles.

1. A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, USA, 2006.

2. K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, USA, 1993.

3. L. Lugo Motta, J. E. Nápoles Valdés, and M. Vivas-Cortez, On the oscillatory behavior of some forced nonlinear generalized differential equation, Investigación Operacional 42 (2021), no. 2, 267–278, https://rev-inv-ope.pantheonsorbonne.fr/sites/default/files/inline-files/42221-10.pdf.

4. R. Khalil, M. AlHorani, A. Yousef, and M. A. Sababheh, New definition of fractional derivative, J. Comp. Appl. Math. 264 (2014), 65–70, DOI: https://doi.org/10.1016/j.cam.2014.01.002.

5. T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57–66, DOI: https://doi.org/10.1016/j.cam.2014.10.016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3