Affiliation:
1. School of Computing Sciences , University of East Anglia , Norwich NR4 7TJ, UK
Abstract
Abstract
A recent paper proposed an extended trivariate generalized linear mixed model (TGLMM) for synthesis of diagnostic test accuracy studies in the presence of non-evaluable index test results. Inspired by the aforementioned model we propose an extended trivariate vine copula mixed model that includes the TGLMM as special case, but can also operate on the original scale of sensitivity, specificity, and disease prevalence. The performance of the proposed vine copula mixed model is examined by extensive simulation studies in comparison with the TGLMM. Simulation studies showed that the TGLMM leads to biased meta-analytic estimates of sensitivity, specificity, and prevalence when the univariate random effects are misspecified. The vine copula mixed model gives nearly unbiased estimates of test accuracy indices and disease prevalence. Our general methodology is illustrated by meta-analysing coronary CT angiography studies.
Funder
University of East Anglia
Subject
Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献