Plastid Signals Confer Arabidopsis Tolerance to Water Stress

Author:

Cheng Jian12,He Chun-Xia13,Zhang Zhong-Wei14,Xu Fei4,Zhang Da-Wei1,Wang Xiao1,Yuan Shu4,Lin Hong-Hui1

Affiliation:

1. Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China

2. c Plant Physiology Laboratory, College of Life Science, Sichuan University, Chengdu 610064, China

3. Department of Life and Resource Environment, Ili Normal University, Kuitun 833200, China

4. Plant Physiology Laboratory, College of Life Science, Sichuan University, Chengdu 610064, China

Abstract

Plastid-to-nucleus retrograde signalling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. The relationship between plastid signalling and water stress response was investigated with genome uncoupled (gun) mutants, gun1, gun3, and gun5, and an abscisic acid (ABA)-responsible transcription factor mutant, abi4. The results showed that gun1, gun3, gun5, and abi4 mutants suffered from more oxidative damages than the wild-type plants under the water stress and the water stress + herbicide (norflurazon, NF) co-treatment. Superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities could not be prompted in the plastidsignalling defective mutants under the stress conditions. At the same time, Lhcb expression was not repressed in the plastid-signalling defective mutants by the NF treatment or water stress. Therefore, the photosynthetic apparatus in the mutant cells could not be closed during the stresses and the excessive light caused more photodamages on the mutant leaves. The roles of GUN1, GUN3, GUN5 and ABI4 proteins in environmental stress adaptation have been discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3