Temporally Local Maximum Likelihood with Application to SIS Model

Author:

Gourieroux Christian12,Jasiak Joann3ORCID

Affiliation:

1. University of Toronto , Toronto , Canada

2. Toulouse School of Economics (TSE) , Toulouse , France

3. York University , Toronto , Canada

Abstract

Abstract The parametric estimators applied by rolling are commonly used for the analysis of time series with nonlinear patterns, including time varying parameters and local trends. This paper examines the properties of rolling estimators in the class of temporally local maximum likelihood (TLML) estimators. We consider the TLML estimators of (a) constant parameters, (b) stochastic, stationary parameters and (c) parameters with the ultra-long run (ULR) dynamics bridging the gap between the constant and stochastic parameters. We show that the weights used in the TLML estimators have a strong impact on the inference. For illustration, we provide a simulation study of the epidemiological susceptible–infected–susceptible (SIS) model, which explores the finite sample performance of TLML estimators of a time varying contagion parameter.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3