A Meshfree Numerical Technique Based on Radial Basis Function Pseudospectral Method for Fisher’s Equation

Author:

Arora Geeta1,Bhatia Gurpreet Singh1

Affiliation:

1. Department of Mathematics, Lovely Professional University, Phagwara, Punjab144411, India

Abstract

AbstractThis paper concerns with the implementation of radial basis function pseudospectral (RBF-PS) method for solving Fisher’s equation. Pseudospectral methods are well known for being highly accurate but are limited in terms of geometric flexibility. Radial basis function (RBF) in combination with the pseudospectral method is capable to overcome this limitation. Using RBF, Fisher’s equation is approximated by transforming it into a system of ordinary differential equations (ODEs). An ODE solver is used to solve the resultant ODEs. In this approach, the optimal value of the shape parameter is discussed with the help of leave-one out cross validation strategy which plays an important role in the accuracy of the result. Several examples are given to demonstrate the accuracy and efficiency of the method. RBF-PS method is applied using different types of basis functions and a comparison is done based upon the numerical results. A two-dimensional problem that generalizes the Fisher’s equation is also solved numerically. The obtained numerical results and comparisons confirm that the use of RBF in pseudospectral mode is in good agreement with already known results in the literature.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference96 articles.

1. Efficient numerical solution of Fisher’s equation by using B-spline method;Int. J. Comput. Math.,2010

2. A best finite-difference scheme for the fisher equation;Numer. Methods Partial. Differ. Equ.,1994

3. Cubic trigonometric B-spline differential quadrature method for numerical treatment of Fisher’s reaction-diffusion equations;Alexandria Eng. J.,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3