One-dimensional optimal system and similarity transformations for the 3 + 1 Kudryashov–Sinelshchikov equation

Author:

Paliathanasis Andronikos12ORCID

Affiliation:

1. Institute of Systems Science, Durban University of Technology , P.O. Box 1334 , Durban 4000 , Republic of South Africa

2. Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile , Valdivia , Chile

Abstract

Abstract We apply the Lie theory to determine the infinitesimal generators of the one-parameter point transformations which leave invariant the 3 + 1 Kudryashov–Sinelshchikov equation. We solve the classification problem of the one-dimensional optimal system, while we derive all the possible independent Lie invariants; that is, we determine all the independent similarity transformations which lead to different reductions. For an application, the results are applied to prove the existence of travel-wave solutions. Furthermore, the method of singularity analysis is applied where we show that the 3 + 1 Kudryashov–Sinelshchikov equation possess the Painlevé property and its solution can be written by using a Laurent expansion.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference50 articles.

1. P. J. Olver, Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1993.

2. N. H. Ibragimov, “CRC handbook of lie group analysis of differential equations,” in Symmetries, Exact Solutions, and Conservation Laws, vol. I, Florida, CRS Press LLC, 2000.

3. G. W. Bluman and S. Kumei, Symmetries of Differential Equations, New York, Springer-Verlag, 1989.

4. H. Stephani, Differential Equations: Their Solutions Using Symmetry, New York, Cambridge University Press, 1989.

5. M. C. Nucci, “Jacobi’s last multiplier, Lie symmetries, and hidden linearity: “Goldfishes” galore,” Theor. Math. Phys., vol. 151, p. 851, 2007. https://doi.org/10.1007/s11232-007-0070-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3