Comparison between 2D and 3D Simulation of Contact of Two Deformable Axisymmetric Bodies

Author:

Dosaev Marat1,Samsonov Vitaly12,Bekmemetev Vladislav2

Affiliation:

1. Institute of Mechanics , Lomonosov Moscow State University , Michurinskiy pr-t,1 , Moscow 119192 , Russian Federation

2. Department of Theoretical Mechanics and Mechatronics , Lomonosov Moscow State University , Moscow , Russian Federation

Abstract

Abstract A portable pneumatic video-tactile sensor for determining the local stiffness of soft tissue and the methodology for its application are considered. The expected range of local elastic modulus that can be estimated by the sensor is 100 kPa–1 MPa. The current version of the device is designed to determine the characteristics of tissues that are close in mechanical properties to the skin with subcutis and muscles. A numerical simulation of the contact between the sensor head and the soft tissue was performed using the finite-element method. Both 2D and 3D models were developed. Results of experiments with device prototype are used for approval of adequacy of mathematical modelling in case of large deformations. Simulation results can be used to create soft tissue databases, which will be required to determine the local stiffness of soft tissues by the sensor. 2D model proved to be more efficient for the chosen range of values of local stiffness of soft tissues.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3