Variational Approaches to P(X)-Laplacian-Like Problems with Neumann Condition Originated from a Capillary Phenomena

Author:

Heidarkhani Shapour1,Afrouzi Ghasem A.2,Moradi Shahin2

Affiliation:

1. Department of Mathematics, Faculty of sciences, Razi University, 67149Kermanshah, Iran

2. Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract

AbstractThis article presents several sufficient conditions for the existence of at least one weak solution and infinitely many weak solutions for the following Neumann problem, originated from a capillary phenomena, $$\begin{equation*} \left\{\begin{array}{ll} -{\rm div}\bigg(\bigg(1+\frac{|\nabla u|^{p(x)}}{\sqrt{1+|\nabla u|^{2p(x)}}}\bigg) |\nabla u|^{p(x)-2}\nabla u\bigg)+\alpha(x)|u|^{p(x)-2}u\\=\lambda f(x,u) \mbox{in}\,\,\Omega,\\ \frac{\partial u}{\partial \nu}=0\mbox{on}\,\,\partial \Omega \end{array}\right. \end{equation*}$$where $\Omega \subset \mathbb{R}^N$$(N\geq 2)$ is a bounded domain with boundary of class $C^1,$$\nu$ is the outer unit normal to $\partial \Omega,$$\lambda>0$, $\alpha\in L^{\infty}(\Omega),$$f:\Omega\times\mathbb{R}\to\mathbb{R}$ is an $L^1$-Carathéodory function and $p\in C^0(\overline{\Omega})$. Our technical approach is based on variational methods and we use a more precise version of Ricceri’s Variational Principle due to Bonanno and Molica Bisci. Some recent results are extended and improved. Some examples are presented to illustrate the application of our main results.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference118 articles.

1. On the spaces Lp(x)(Ω) and W1,p(x)(Ω);Czechoslovak Math,1991

2. Multiple solutions for p(x) -Laplacian-like problems with Neumann condition;Acta Universitatis Apulensis,2017

3. Existence results for one-dimensional fractional equations;Math. Meth. Appl. Sci,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3