Affiliation:
1. 1Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409-1021, USA
Abstract
AbstractThis paper presents direct numerical simulation (DNS) result of the Navier–Stokes equations for turbulent channel flows with blowing and suction effects. The friction Reynolds number is ${\rm{R}}{{\rm{e}}_\tau} = 394$ and a range of blowing and suction conditions is covered with different perturbation strengths, i. e. $A = 0.05, $ 0.1, 0.2. While the mean velocity profile has been severely altered, the probability density function (PDF) for (spanwise) vorticity – depending on wall distance $({y^ +})$ and blowing/suction strength (A) – satisfies the generalized hyperbolic distribution (GHD) of Birnir [The Kolmogorov-Obukhov statistical theory of turbulence, J. Nonlinear Sci. (2013a), doi: 10.1007/s00332-012-9164–z; The Kolmogorov-Obukhov theory of turbulence, Springer, New York, 2013b] in the bulk of the flow. The latter leads to accurate descriptions of all PDFs (at ${y^ +} = 40, $ 200, 390 and $A = 0.05, $ 0.2, for instance) with only four parameters. The result indicates that GHD is a general tool to quantify PDF for turbulent flows under various wall surface conditions.
Subject
Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics