Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities

Author:

Issakhov Alibek1,Alimbek Aidana1

Affiliation:

1. Al-Farabi Kazakh National University , Almaty , Kazakhstan

Abstract

Abstract In this work, numerical modeling and assessment of the dispersion of pollutants as a result of a chemical reaction from the activities of the Ekibastuz SDPP-1 was considered. The simulation was done on a valid thermal power plant. At the same time, to model the dispersion of pollutants NO, NO2 and CO were used, and the products NO2, HNO3 and CO2 from a chemical reaction with oxygen were also considered. The validation of the mathematical model, taking into account the chemical reaction, was carried out using several test problems and the obtained numerical results were compared with experimental data and numerical data of other authors. So in this work, estimates of the concentration level were given, both for pollutants and for products that were formed from a chemical reaction. As a result, the mass fractions of concentration and product were determined during a chemical reaction for various distances from chimneys. According to the data obtained, it can be noticed that, under the influence of diffusion, concentrations and products during a chemical reaction spread wider in width and due to this diffusion, the concentration level with an increase in the distance from the chimneys is lower. So, according to the data obtained, it is possible to assess the choice of the optimal distance of the thermal power plant from residential areas, at which the concentration of emissions and products from a chemical reaction will remain at a safe level.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3