Stability, Bifurcation and Optimal Control Analysis of a Malaria Model in a Periodic Environment

Author:

Panja Prabir1,Kumar Mondal Shyamal2,Chattopadhyay Joydev3

Affiliation:

1. Department of Applied Science, Haldia Institute of Technology, Haldia-721657, W.B., India

2. Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721 102, W.B., India

3. Agricultural and Ecological Research Unit, ISI Kolkata, 203 B.T. Road, W.B., India

Abstract

AbstractIn this paper, a malaria disease transmission model has been developed. Here, the disease transmission rates from mosquito to human as well as human to mosquito and death rate of infected mosquito have been constituted by two variabilities: one is periodicity with respect to time and another is based on some control parameters. Also, total vector population is divided into two subpopulations such as susceptible mosquito and infected mosquito as well as the total human population is divided into three subpopulations such as susceptible human, infected human and recovered human. The biologically feasible equilibria and their stability properties have been discussed. Again, the existence condition of the disease has been illustrated theoretically and numerically. Hopf-bifurcation analysis has been done numerically for autonomous case of our proposed model with respect to some important parameters. At last, a optimal control problem is formulated and solved using Pontryagin’s principle. In numerical simulations, different possible combination of controls have been illustrated including the comparisons of their effectiveness.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference78 articles.

1. Dynamics of cholera outbreak with bacteriophage and periodic rate of contact;Int. J. Dyn. Con.,2016

2. The theory of chemostat: dynamics of microbial competition;J. Am. Chem. Soc.,1996

3. Stability and bifurcation analysis of Japanese encephalitis model with/without effects of some control parameters;Comput. Appl. Math.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3