Computational study of intravenous magnetic drug targeting using implanted magnetizable stent

Author:

Krafcik Andrej1ORCID,Babincova Melania2ORCID,Babinec Peter2ORCID,Frollo Ivan1ORCID

Affiliation:

1. Institute of Measurement Science, Slovak Academy of Sciences , Dubravska Cesta 9, 841 04 Bratislava , Slovakia

2. Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics , Comenius University , Mlynska Dolina F1, 842 48 Bratislava , Slovakia

Abstract

Abstract Magnetic carriers for guiding, delivery, and capturing of drugs to desired place attract interest in the field of smart treatment of various pathological conditions. Presented paper, therefore, deals with one such application with the theoretical model of magnetic fluid flow through vessel bifurcation with one arm treated with ferromagnetic vascular stent placed in an external originally homogeneous magnetic field. This flow was described as laminar Newtonian incompressible continuum of the magnetic many-bead system, with Reynolds number 1 $\approx 1$ , using magnetic force variant of the Nernst–Planck equation coupled with the Navier–Stokes equations, solved numerically by the finite element method (FEM). This approach allowed us to quantify capturing efficiency of magnetic beads in each arm of bifurcation vessels. Results show reduction of the number of magnetic beads entering as well as leaving the arm treated with stent in comparison with the untreated one. For stented bifurcation arm, the significant amount of beads are captured to its luminal surface, which may be used for drug delivery using magnetic carriers.

Funder

Slovak Scientific Grant Agency

Slovak Research and Development Agency

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3