Riemann problem and limits of solutions to the isentropic relativistic Euler equations for isothermal gas with flux approximation

Author:

Zhang Yu1,Zhang Yanyan2

Affiliation:

1. Department of Mathematics , Yunnan Normal University , Kunming , 650500 , PR China

2. College of Mathematics and Statistics , Xinyang Normal University , Xinyang , 464000 , PR China

Abstract

Abstract We are concerned with the vanishing flux-approximation limits of solutions to the isentropic relativistic Euler equations governing isothermal perfect fluid flows. The Riemann problem with a two-parameter flux approximation including pressure term is first solved. Then, we study the limits of solutions when the pressure and two-parameter flux approximation vanish, respectively. It is shown that, any two-shock-wave Riemann solution converges to a delta-shock solution of the pressureless relativistic Euler equations, and the intermediate density between these two shocks tends to a weighted δ-measure that forms a delta shock wave. By contract, any two-rarefaction-wave solution tends to a two-contact-discontinuity solution of the pressureless relativistic Euler equations, and the intermediate state in between tends to a vacuum state.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3