Recurrence relations for a family of iterations assuming Hölder continuous second order Fréchet derivative

Author:

Gupta Dharmendra Kumar1,Martínez Eulalia2,Singh Sukhjit3,Hueso Jose Luis4,Srivastava Shwetabh5,Kumar Abhimanyu6

Affiliation:

1. Department of Mathematics , Indian Institute of Information Technology Ranchi , Ranchi , India

2. Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València , Valencia , Spain

3. Department of Mathematics , Dr BR Ambedkar, National Institute of Technology Jalandhar , Jalandhar 144011 , India

4. Instituto de Matemática Multidisciplinar, Universitat Politècnica de València , Valencia , Spain

5. CMP Degree College , University of Allahabad , Prayagraj , India

6. Department of Mathematics , Lalit Narayan Mithila University , Darbhanga 846004 , India

Abstract

Abstract The semilocal convergence using recurrence relations of a family of iterations for solving nonlinear equations in Banach spaces is established. It is done under the assumption that the second order Fréchet derivative satisfies the Hölder continuity condition. This condition is more general than the usual Lipschitz continuity condition used for this purpose. Examples can be given for which the Lipschitz continuity condition fails but the Hölder continuity condition works on the second order Fréchet derivative. Recurrence relations based on three parameters are derived. A theorem for existence and uniqueness along with the error bounds for the solution is provided. The R-order of convergence is shown to be equal to 3 + q when θ = ±1; otherwise it is 2 + q, where q ∈ (0, 1]. Numerical examples involving nonlinear integral equations and boundary value problems are solved and improved convergence balls are found for them. Finally, the dynamical study of the family of iterations is also carried out.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference23 articles.

1. I. K. Argyros and S. Hilout, Numerical Methods in Nonlinear Analysis, New Jersey, World Scientific Publ. Comp., 2013.

2. I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, New York, Nova Publishers, 2011.

3. J. F. Traub, Iterative Methods for the Solution of Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1964.

4. L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, Ed., New York, Krieger Publishing Company, 1979.

5. A. Cordero, J. A. Ezquerro, M. A. Hernández, and J. R. Torregrosa, “On the local convergence of a fifth-order iterative method in Banach spaces,” Appl. Math. Comput., vol. 251, pp. 396–403, 2015. https://doi.org/10.1016/j.amc.2014.11.084.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local permutation tests for conditional independence;The Annals of Statistics;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3